
How to be a
Prompt Engineer

How to be a
Prompt Engineer

How to be a
Prompt Engineer

You are a tool that extracts project backlog
items from given texts.

If there are any quotes change them to
single quotes.

You should read whole text and extract array
of backlog items in JSON format from it.

Tine Starič
Software Architect @ Companial

Agenda
• Build prompts with structure and examples
• Use model capabilities to your advantage
• Test prompts and test them again

Build prompts with structure and
examples

You are a tool that extracts project backlog items from given texts.

If there are any quotes change them to single quotes.

You should read whole text and extract array of backlog items in JSON format from it.

Build prompts with structure and
examples

Build prompts with structure and
examples
All about the words

Instructions/Task Definition

Steps

Format Requirements

Examples

Notes/Remarks

Few-shot learning
Don’t only tell the model what you want, show the model how you want it

Please extract the items mentioned in the following text that the user wants to add to the purchase
order and return them in JSON format.

Add 50 units of Item A and 100 units of Item B to the purchase order.

Few-shot learning
Don’t only tell the model what you want, show the model how you want it

Extract the items a user specifies they want to add to a purchase order in the ERP and return them in
JSON format. Here are some examples:

Example 1:
Text: 'Please add 30 units of Item X, 10 units of Item Y, and 5 units of Item Z to the purchase order.'

Output:

{ "items": [{ "name": "Item X", "quantity": 30 }, { "name": "Item Y", "quantity": 10 }, { "name": "Item Z",
"quantity": 5 }] }

Example 2:
Text: 'Include 15 units of Part A and 25 units of Part B in the order.'

Output:

{ "items": [{ "name": "Part A", "quantity": 15 }, { "name": "Part B", "quantity": 25 }] }

Add 50 units of Item A and 100 units of Item B to the purchase order.

Examples

Examples

Example 1: User Requirement Document

- Input: [Provide summary or key parts of the
document]

- JSON Output:

  ```json

  {

    "title": "[Title extracted from document]",

    "description": "[A comprehensive 
description extracted from the document.]",

    "acceptanceCriteria": "[List of acceptance 
criteria extracted from the document.]",

    "priority": "[Priority level, if provided.]"

  }

  ```

Example 2: Bug List

- Input: [Summary or key details of the bug]

- JSON Output:

  ```json

  {

    "title": "[Bug title]",

    "description": "[Detailed bug description]",

    "acceptanceCriteria": "[Criteria for 
resolution]",

    "priority": "[Priority level (e.g., critical, high, 
medium, low)]"

  }

  ```

Example 3: Use Case Document

- Input: [Summary or key parts of the use
case]

- JSON Output:

  ```json

  {

    "title": "[Use case title]",

    "description": "[Detailed description of the 
use case]",

    "acceptanceCriteria": "[Acceptance criteria 
derived from the use case]",

    "priority": "[Priority level, if applicable]“

}

```


Chain of Though
Give the model time to think

Determine if a requested discount can be approved based on order value.

value > 10k – max discount 15%

5k < value < 10k – max discount 10%

value < 5k – max discount 5%

Determine if a discount of 12% can be approved for an order value of $8,000

Chain of Though
Give the model time to think

Determine if a requested discount can be approved based on order value.

value > 10k – max discount 15%

5k < value < 10k – max discount 10%

value < 5k – max discount 5%

Follow these steps to reach the decision:

Identify the Order Value: Check the order value provided.

Determine the Discount Threshold: Based on the order value, decide the maximum allowable discount.

Compare Discount with Threshold: Check if the requested discount is within the allowable limit.

Make a Decision: If the requested discount is within the allowable limit, approve the request; otherwise,
reject it.

Determine if a discount of 12% can be approved for an order value of $8,000

Chain of Though
Give the model time to think

Steps

1. **Read and Understand the Input**: Analyze the user's input document to identify key components related to backlog
items.

2. **Identify Key Components**:

 - **Title**: Determine the overarching title or main topic.

 - **Description**: Extract a detailed description of the item.

 - **Acceptance Criteria**: Define what constitutes successful completion.

 - **Priority**: Identify the priority level if provided.

 - **Additional Information**: Gather any other relevant details such as status, assignee, or dependencies.

3. **Structure Information**: Organize identified information into a JSON format, ensuring each field is correctly labeled
and populated.

Prompt Reinforcement/Anchoring
Remind the model what you want

Determine if a requested discount can be approved based on order value.
value > 10k – max discount 15%

5k < value < 10k – max discount 10%
value < 5k – max discount 5%

Follow these steps:
Identify the Order Value

Determine the Discount Threshold
Compare Discount with Threshold

Make a Decision

Notes:
• Ensure that the requested discount is compared with the maximum allowable discount for the specified order range.
• Follow each rule carefully and evaluate both the order value and requested discount before making a decision.
• Provide a clear final decision as either ‘Approve’ or ‘Reject’.

Build prompts with structure and
examples

Instructions/Task Definition

Steps

Format Requirements

Examples

Notes/Remarks

Build prompts with structure and
examples

You are a tool that extracts project backlog items from given texts.

If there are any quotes change them to single quotes.

You should read whole text and extract array of backlog items in JSON format from it.

Build prompts with structure and
examples

Extract information from requirement documents, bug lists, or use cases and convert it into a JSON format suitable for backlog items.

- Analyze the input document for relevant information such as titles, descriptions, acceptance criteria, and priorities.

- Structure the extracted data into a JSON format that aligns with backlog item conventions, ensuring all necessary fields are included.

Steps

1. **Read and Understand the Input**: Analyze the user's input document to identify key components related to backlog items.

2. **Identify Key Components**:

 - **Title**: Determine the overarching title or main topic.

 - **Description**: Extract a detailed description of the item.

 - **Acceptance Criteria**: Define what constitutes successful completion.

 - **Priority**: Identify the priority level if provided.

 - **Additional Information**: Gather any other relevant details such as status, assignee, or dependencies.

3. **Structure Information**: Organize identified information into a JSON format, ensuring each field is correctly labeled and populated.

Output Format

The output should be in JSON format, including but not limited to the following fields:

- `title`: A short, descriptive title of the backlog item.

- `description`: A detailed explanation of the backlog item.

- `acceptanceCriteria`: Criteria that need to be met for the item to be considered complete.

- `priority`: The level of priority (e.g., high, medium, low).

- `status`: Current status of the item (optional, if available).

- `assignee`: Person responsible for the item (optional, if available).

- `dependencies`: Any dependencies related to the item (optional, if available).

Examples

Example 1: User Requirement Document

- Input: [Provide summary or key parts of the document]

- JSON Output:

  ```json

  {

    "title": "[Title extracted from document]",

    "description": "[A comprehensive description extracted from the document.]",

    "acceptanceCriteria": "[List of acceptance criteria extracted from the document.]",

    "priority": "[Priority level, if provided.]"

  }

  ```

Example 2: Bug List

- Input: [Summary or key details of the bug]

- JSON Output:

  ```json

  {

    "title": "[Bug title]",

    "description": "[Detailed bug description]",

    "acceptanceCriteria": "[Criteria for resolution]",

    "priority": "[Priority level (e.g., critical, high, medium, low)]"

  }

  ```

Example 3: Use Case Document

- Input: [Summary or key parts of the use case]

- JSON Output:

  ```json

  {

    "title": "[Use case title]",

    "description": "[Detailed description of the use case]",

    "acceptanceCriteria": "[Acceptance criteria derived from the use case]",

    "priority": "[Priority level, if applicable]"

  }

  ```

Notes

- Ensure data integrity by accurately mapping document content to backlog item fields.

- Handle varying document structures flexibly, considering different formats and terminologies used in requirement documents, bug lists, or use cases.

Build prompts with structure and
examples

Instructions/Task Definition

Steps

Format Requirements

Examples

Notes/Remarks

Instructions/Task Definition
Extract information from requirement documents, bug lists, or use cases and convert it into a JSON format

suitable for backlog items.

- Analyze the input document for relevant information such as titles, descriptions, acceptance criteria, and
priorities.

- Structure the extracted data into a JSON format that aligns with backlog item conventions, ensuring all
necessary fields are included.

Steps

Format Requirements

Examples

Notes/Remarks

Instructions/Task Definition

Steps
Steps

1. **Read and Understand the Input**: Analyze the user's input document to identify key components
related to backlog items.

2. **Identify Key Components**:
 - **Title**: Determine the overarching title or main topic.

 - **Description**: Extract a detailed description of the item.
 - **Acceptance Criteria**: Define what constitutes successful completion.

 - **Priority**: Identify the priority level if provided.
 - **Additional Information**: Gather any other relevant details such as status, assignee, or dependencies.

3. **Structure Information**: Organize identified information into a JSON format, ensuring each field is
correctly labeled and populated.

Format Requirements

Examples

Notes/Remarks

Instructions/Task Definition

Steps

Format Requirements
Output Format

The output should be in JSON format, including but not limited to the following fields:
- `title`: A short, descriptive title of the backlog item.

- `description`: A detailed explanation of the backlog item.
- `acceptanceCriteria`: Criteria that need to be met for the item to be considered

complete.
- `priority`: The level of priority (e.g., high, medium, low).

- `dependencies`: Any dependencies related to the item (optional, if available).

Examples

Notes/Remarks

Instructions/Task Definition

Steps

Format Requirements

Examples
Examples

Example 1: User Requirement Document
- Input: [Provide summary or key parts of the document]

- JSON Output:
  ```json

  {
    "title": "[Title extracted from document]",

    "description": "[A comprehensive description extracted from the document.]",
    "acceptanceCriteria": "[List of acceptance criteria extracted from the document.]",

    "priority": "[Priority level, if provided.]"
  }
  ```

Notes/Remarks

Instructions/Task Definition

Steps

Format Requirements

Examples

Notes/Remarks
Notes

- Always replace double quotes with single quotes in the JSON output.
- The goal is to create a JSON output suitable for backlog item creation. Ensure each

JSON field directly contributes to that purpose.
- Handle varying document structures flexibly, considering different formats and

terminologies used in requirement documents, bug lists, or use cases.

Build prompts with structure and
examples

Instructions/Task Definition

Steps

Format Requirements

Examples

Notes/Remarks

Use model capabilities
JSON Mode

Extract user stories, bugs, or use cases from the provided text and return the information in JSON.

Please make sure the information is in JSON format.

No comments

Only JSON

Pretty please

Use model capabilities
JSON Mode

Extract user stories, bugs, or use cases from the provided text and return the information in JSON.
Please make sure the information is in JSON format.

No comments
Only JSON

Pretty please

Sure thing! Here’s a JSON with all the information without any comments
 ```json

  {
    "title": "[Title extracted from document]",

    "description": "[A comprehensive description extracted from the document.]",
    "acceptanceCriteria": "[List of acceptance criteria extracted from the document.]"

}
  ```


Use model capabilities
JSON Mode

Extract user stories, bugs, or use cases from the provided text and return the information in JSON.

{

 "title": "[Title extracted from document]",

 "description": "[A comprehensive description extracted from the document.]",

 "acceptanceCriteria": "[List of acceptance criteria extracted from the document.]"

}

Tool calling

What is the status
of the order 1001

I’m unable to show
order information

Order has been
shipped to Asia
yesterday

You are a friendly assistant that helps users navigate
around Business Central

Tool calling

What is the status
of the order 1001

The Order 1001 for Adatum
Corporation is waiting for
approval from user TINES.

You are a friendly assistant that helps users navigate
around Business Central

You can access the following actions:

get_order_info: for details about orders

Call
get_order_info(1001)

Procedure get_order_info(OrderNo: Code[20])

Begin

 SalesHeader.Get(Type::Order, OrderNo);

 Exit(‘Customer: %1, Status: %2, Address: %3’, SalesHeader)

End;

Tool calling

Update Credit Limit
for Customer in North
America by 15% and
change their Payment
terms to Net 45

You are an assistant for managing customer data updates
based on dimensions like regions or customer segments.

You can access the following actions:

update_credit_limit for adjusting credit limits.

update_payment_terms for changing payment terms.

Call
update_credit_limit(area, NA, 15%)

Call
Update_payment_terms(area, NA, NET45)

Use model capabilities

Use model capabilities
Prompt Guides

Use model capabilities
Prompt Guides

Use model capabilities
Prompt Guides

Testing prompts
AI changes... All the time...

Testing prompts
AI changes... All the time...

GPT 4o
gpt-4o (2024-08-06)
gpt-4o (2024-05-13)

gpt-4-turbo-2024-04-09
gpt-4-0125-preview
gpt-4-1106-preview

gpt-4-0613
gpt-4-0314

Meta prompt
Ensure that no sensitive or confidential information is disclosed beyond the order status.

Present the information in a professional tone, and confirm the identity of the requesting user
when required. Avoid speculative or unverified details about order processing.

System prompt
Extract the order id and use the get_order_status tool if available. Provide details on

the current processing stage, estimated delivery date, and any pending actions,
formatted as a summary for the user.

Meta prompts
Ensuring Compliance at the Cost of Stability?

User Prompt
What’s the status of order #2234?

System prompt
Extract the order id and use the get_order_status tool if available. Provide details on

the current processing stage, estimated delivery date, and any pending actions,
formatted as a summary for the user.

Meta prompts
Ensuring Compliance at the Cost of Stability?

User Prompt
What’s the status of order #2234?

AI changes... All the time...

Determine if a requested discount can be approved based on order value.

value > 10k – max discount 15%

5k < value < 10k – max discount 10%

value < 5k – max discount 5%

Determine if a discount of 12% can be approved for an order value of $8,000

Testing prompts

Testing prompts
AI changes... All the time...

Determine if a discount of 12% can be approved for an order value of $8,000 - Reject

Can I give 7% discount for $6,000 order - Approve

Is a discount of 17% allowed for an order of $20,000 - Reject

For order value $3,000 am I allowed to approve a discount of 8% - Reject

Is a 20% discount acceptable for a $25,000 order? - Reject

Would a 5% discount be allowed on an order value of $3,000? - Approve

Is a 2% discount permissible for an order worth $1,000? – Approve

Testing prompts
AI changes... All the time...

Testing prompts
AI Test Toolkit – Coming in December 2024

Build prompts with structure and
examples

Instructions/Task Definition

Steps

Format Requirements

Examples

Notes/Remarks

Use model capabilites

Call
get_order_info(1001)

Test prompts and test them again

Find me on:
• X (Twitter): @TineStaric
• LinkedIn: /tinestaric
• Blog: tine.staric.net
• Email: tine.staric@companial.com

Reach out with questions!

Thank you !

Give us Feedback!

	Slide 1: How to be a Prompt Engineer
	Slide 2: How to be a Prompt Engineer
	Slide 3: How to be a Prompt Engineer
	Slide 4: Tine Starič Software Architect @ Companial
	Slide 5: Agenda
	Slide 7: Build prompts with structure and examples
	Slide 8: Build prompts with structure and examples
	Slide 9: Build prompts with structure and examples
	Slide 13: Few-shot learning
	Slide 14: Few-shot learning
	Slide 15: Examples
	Slide 16: Chain of Though
	Slide 17: Chain of Though
	Slide 18: Chain of Though
	Slide 19: Prompt Reinforcement/Anchoring
	Slide 20: Build prompts with structure and examples
	Slide 21: Build prompts with structure and examples
	Slide 22: Build prompts with structure and examples
	Slide 23: Build prompts with structure and examples
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 34: Build prompts with structure and examples
	Slide 36: Use model capabilities
	Slide 37: Use model capabilities
	Slide 38: Use model capabilities
	Slide 40: Tool calling
	Slide 41: Tool calling
	Slide 42: Tool calling
	Slide 43: Use model capabilities
	Slide 44: Use model capabilities
	Slide 45: Use model capabilities
	Slide 46: Use model capabilities
	Slide 50: Testing prompts
	Slide 51: Testing prompts
	Slide 52: Meta prompts
	Slide 53: Meta prompts
	Slide 54: Testing prompts
	Slide 55: Testing prompts
	Slide 56: Testing prompts
	Slide 57: Testing prompts
	Slide 59: Build prompts with structure and examples
	Slide 60: Use model capabilites
	Slide 61: Test prompts and test them again
	Slide 62: Give us Feedback!

